Robust Superlubricity in Graphene/h-BN Heterojunctions.

نویسندگان

  • Itai Leven
  • Dana Krepel
  • Ortal Shemesh
  • Oded Hod
چکیده

The sliding energy landscape of the heterogeneous graphene/h-BN interface is studied by means of the registry index. For a graphene flake sliding on top of h-BN, the anisotropy of the sliding energy corrugation with respect to the misfit angle between the two naturally mismatched lattices is found to reduce with the flake size. For sufficiently large flakes, the sliding energy corrugation is expected to be at least an order of magnitude lower than that obtained for matching lattices regardless of the relative interlayer orientation. Therefore, in contrast to the case of the homogeneous graphene interface where flake reorientations are known to eliminate superlubricty, here, a stable low-friction state is expected to occur. Our results mark heterogeneous layered interfaces as promising candidates for dry lubrication purposes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere

Superlubricity of graphite and graphene has aroused increasing interest in recent years. Yet how to obtain a long-lasting superlubricity between graphene layers, under high applied normal load in ambient atmosphere still remains a challenge but is highly desirable. Here, we report a direct measurement of sliding friction between graphene and graphene, and graphene and hexagonal boron nitride (h...

متن کامل

Theoretical study of electronic and tribological properties of h-BNC2/graphene, h-BNC2/h-BN and h-BNC2/h-BNC2 bilayers.

Density functional theory based methods are used to investigate the interlayer sliding energy landscape (ISEL), binding energy and interlayer spacing between h-BNC2/graphene (I), h-BNC2/h-BN (II) and h-BNC2/h-BNC2 (III) bilayer structures for three, six and fourteen different stacking patterns, respectively. Our results show that, in the studied cases, increasing the atomic variety of the ingre...

متن کامل

Hyperspectral imaging of structure and composition in atomically thin heterostructures.

Precise vertical stacking and lateral stitching of two-dimensional (2D) materials, such as graphene and hexagonal boron nitride (h-BN), can be used to create ultrathin heterostructures with complex functionalities, but this diversity of behaviors also makes these new materials difficult to characterize. We report a DUV-vis-NIR hyperspectral microscope that provides imaging and spectroscopy at e...

متن کامل

Switching Behaviors of Graphene-Boron Nitride Nanotube Heterojunctions

High electron mobility of graphene has enabled their application in high-frequency analogue devices but their gapless nature has hindered their use in digital switches. In contrast, the structural analogous, h-BN sheets and BN nanotubes (BNNTs) are wide band gap insulators. Here we show that the growth of electrically insulating BNNTs on graphene can enable the use of graphene as effective digi...

متن کامل

Interlayer Potential for Graphene/h-BN Heterostructures.

We present a new force-field potential that describes the interlayer interactions in heterojunctions based on graphene and hexagonal boron nitride (h-BN). The potential consists of a long-range attractive term and a short-range anisotropic repulsive term. Its parameters are calibrated against reference binding and sliding energy profiles for a set of finite dimer systems and the periodic graphe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry letters

دوره 4 1  شماره 

صفحات  -

تاریخ انتشار 2013